DYNAMOMETER DATA SHEET
(Version 1.1)

MODELS:

DB6B-2.4T-FM DB6M-2.4T-FM
DB6B-2.4T-BM DB6M-2.4T-BM

Max continuous power dissipation: 2 HP (1.49 kilowatts)
Max continuous brake torque: 134 in-oz. (94 N-cm)
Max brake speed: 15,000 RPM
TABLE OF CONTENTS

1. OVERVIEW ... 4

2. SPEED vs. TORQUE CURVE – FOR ONE MB-2.4 BRAKE .. 6

3. MOTOR TORQUE & SPEED ... 7
 3.1 Pulley Ratio’s (English Units) .. 7
 Table 1: Speed, Torque & Power (English Units) 1:4 ratio.. 7
 Table 2: Speed, Torque & Power (English Units) 1:1 ratio.. 7
 Table 3: Speed, Torque & Power (English Units) 4:1 ratio.. 7
 3.2 Pulley Ratio’s (SI Units) ... 8
 Table 4: Speed, Torque & Power (SI Units) 4:1 Pulley Ratio... 8
 Table 5: Speed, Torque & Power (SI Units) 1:1 Pulley Ratio... 8
 Table 6: Speed, Torque & Power (SI Units) 1:4 Pulley Ratio... 8
 3.3 Load Cell Sizes .. 9
 Table 7: Load Cell Reference .. 9

4. LOAD CELLS (DB6B-2.4T-FM, Measuring Brake Torque) ... 9
 4.1 Brake Load Cell Accuracy Plot (in-oz.) – Linear .. 10
 4.2 Brake Load Cell Accuracy Plot (N-cm) – Linear .. 11

5. LOAD CELLS (DB6M-2.4T-FM, Measuring Motor Torque): .. 12
 5.1 Load Cell #’s 1 through 3 ... 12
 5.2 Load Cell #4. ... 12
 5.3 Motor Load Cell Accuracy Plot (in-oz., 3 & 4-inch arm) - Linear............................... 13
 5.4 Motor Load Cell Accuracy Plot (in-oz., 3 & 4-inch arm) – Logarithmic 14
 5.5 Motor Load Cell Accuracy Plot (N-cm, 7.62 & 10.16-cm arm) – Linear 15
 5.6 Motor Load Cell Accuracy Plot (N-cm, 7.62 & 10.16-cm arm) – Logarithmic 16
 5.7 Motor Load Cell Accuracy Plot (in-oz., 2-inch arm) – Linear 17
 5.8 Motor Load Cell Accuracy Plot (in-oz., 2-inch arm) – Logarithmic 18
 5.9 Motor Load Cell Accuracy Plot (N-cm, 5.08-cm arm) – Linear 19
 5.10 Motor Load Cell Accuracy Plot (N-cm, 5.08-cm arm) - Logarithmic 20
1. OVERVIEW

This data sheet is a reference for the performance specifications of the dynamometer models listed on the cover page.

The MBS dynamometers may be used to test just about any type of motor (i.e. electric, hydraulic, pneumatic, reciprocating). Types of testing include: endurance testing, speed versus torque curves, measure stall torque, efficiency, temperature rise, performance verification, etc. MBS dynamometers are sold as complete systems (shown in image below) that include: the dynamometer, controller, computer with software, calibration weight, manual and all cables. MBS systems do not require annual fees, licenses or permits. The software is user friendly, easily configurable (i.e. changing units, display scale limits, data acquisition rate, etc.) and has some safety precautions build in to prevent damage to the motor under test and/or the system (i.e. brake temperature sensor, setting current limit, setting power limit, trigger input signals).

The nomenclature of the dynamometer model number is described at the end of this document. The power dissipation rating for this system is located on the bottom of the cover page. This data sheet may also be used to determine the best configuration for a system.

Dynamometers, or more specifically the size of the brakes for the dynamometers, are selected based on the required power dissipation and required torque.
A belt coupled system will provide a much broader range of torque/speed supplied to the motor under test, which makes a dynamometer more cost-effective and diverse than a direct drive system. The pulleys are mounted to the brake and an idler shaft, which the motor couples to. The idler shaft strictly provides a torsional load to the motor.

There are two options in load cell configurations for this system.

First option: motor load cell is included (i.e. DB6M-2.4T-FM or DB6M-2.4T-BM). In this system, the operator may exchange the motor load cell as required in order to provide the highest accuracy of measurement for a specific torque range. Accuracy plots may be viewed in Section 3: Motor Torque and Speed. The brakes also have their own load cell, which the controller for the brake uses to control the torque of the brake.

The software allows the operator to switch between reading/recording the motor torque and brake torque. In some cases, such as when a motor is placed in an environmental test chamber (the dynamometer remains outside the test chamber), it may not be possible to measure the motor torque.

Second option: motor load cell is not included (i.e. Model DB6B-2.4T-FM or DB6B-2.4T-BM). For this system, the motor torque is calculated by measuring the brake torque and multiplying by the transmission. Though belt friction, bearing friction and any other minor losses may not be accounted for in the measurements, the bearing friction is usually negligible and a properly aligned belt may have an efficiency as high as 98%. When measuring the brake torque, the air drag from the brake is not measured; however, the dynamometer software compensates for the air drag.

The motor torque, motor speed, voltage range, current range and power type(s) (i.e. DC, AC, AC-3ph) need to be specified when purchasing a dynamometer in order to select the types and limits for the measurement instruments. The following performance specifications for load cells, transducers, etc., are based on vendor specifications.

A certified calibration weight comes with each system. The zero torque and gain are adjusted by the operator as part of the calibration procedure. Calibration takes a couple of minutes and may be performed as often as desired. Customers may use calibrated weights to simulate a specific load to check for torque accuracy.
2. SPEED vs. TORQUE CURVE – FOR ONE MB-2.4 BRAKE
3. MOTOR TORQUE & SPEED

Systems that measure motor torque allow for three options for the load cell arm length: 2-inches, 3-inches, & 4-inches. Possible speed/torque combinations based on different pulley ratios:

3.1 Pulley Ratio’s (English Units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>288</td>
<td>0</td>
<td>4:1</td>
<td>2</td>
<td>72</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,250</td>
<td>416</td>
<td>0.52</td>
<td>4:1</td>
<td>2</td>
<td>104</td>
<td>5,000</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2,500</td>
<td>496</td>
<td>1.2</td>
<td>4:1</td>
<td>2</td>
<td>124</td>
<td>10,000</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3,750</td>
<td>536</td>
<td>2.0</td>
<td>4:1</td>
<td>2</td>
<td>134</td>
<td>15,000</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1: Speed, Torque & Power (English Units) 1:4 ratio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72</td>
<td>0</td>
<td>1:1</td>
<td>2</td>
<td>72</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5,000</td>
<td>104</td>
<td>0.52</td>
<td>1:1</td>
<td>2</td>
<td>104</td>
<td>5,000</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10,000</td>
<td>124</td>
<td>1.2</td>
<td>1:1</td>
<td>2</td>
<td>124</td>
<td>10,000</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>15,000*</td>
<td>134</td>
<td>2.0</td>
<td>1:1</td>
<td>2</td>
<td>134</td>
<td>15,000</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Speed, Torque & Power (English Units) 1:1 ratio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
<td>0</td>
<td>1:4</td>
<td>2</td>
<td>72</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20,000*</td>
<td>26</td>
<td>0.52</td>
<td>1:4</td>
<td>2</td>
<td>104</td>
<td>5,000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20,000*</td>
<td>13</td>
<td>0.26</td>
<td>1:4</td>
<td>1</td>
<td>52</td>
<td>5,000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20,000*</td>
<td>0.03</td>
<td>0.01</td>
<td>1:4</td>
<td>1</td>
<td>0.13***</td>
<td>5,000</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Speed, Torque & Power (English Units) 4:1 ratio

The table is based on the performance graph for the MB-2.4 Brake, shown in Section 2.

* Maximum speed is limited to the physical speed limits of the pulleys and belt.

** See Table 7 for load cell specifications based on the number shown.

*** Torque required to overcome the air drag of brake at speed; does not account for bearing friction or belt losses.
3.2 Pulley Ratio’s (SI Units)

<table>
<thead>
<tr>
<th>Motor_Spd (RPM)</th>
<th>Motor Torque (Ncm)</th>
<th>Power (watts)</th>
<th>Pulley Ratio (motor/brake) Qty. Brks</th>
<th>Brake Torque (Ncm)</th>
<th>Brake_Spd (RPM)</th>
<th>Arm (cm)</th>
<th>L.C. Ref. #**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>203</td>
<td>0</td>
<td>4:1</td>
<td>2</td>
<td>51</td>
<td>0</td>
<td>7.62 3</td>
</tr>
<tr>
<td>1,250</td>
<td>294</td>
<td>388</td>
<td>4:1</td>
<td>2</td>
<td>73</td>
<td>5,000</td>
<td>10.2 3</td>
</tr>
<tr>
<td>2,500</td>
<td>350</td>
<td>895</td>
<td>4:1</td>
<td>2</td>
<td>88</td>
<td>10,000</td>
<td>7.62 4</td>
</tr>
<tr>
<td>3,750</td>
<td>379</td>
<td>1,492</td>
<td>4:1</td>
<td>2</td>
<td>95</td>
<td>15,000</td>
<td>7.62 4</td>
</tr>
</tbody>
</table>

Table 4: Speed, Torque & Power (SI Units) 4:1 Pulley Ratio

<table>
<thead>
<tr>
<th>Motor_Spd (RPM)</th>
<th>Motor Torque (Ncm)</th>
<th>Power (watts)</th>
<th>Pulley Ratio (motor/brake) Qty. Brks</th>
<th>Brake Torque (Ncm)</th>
<th>Brake_Spd (RPM)</th>
<th>Arm (cm)</th>
<th>L.C. Ref. #**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51</td>
<td>0</td>
<td>1:1</td>
<td>2</td>
<td>51</td>
<td>0</td>
<td>5.08 1</td>
</tr>
<tr>
<td>5,000</td>
<td>73</td>
<td>388</td>
<td>1:1</td>
<td>2</td>
<td>73</td>
<td>5,000</td>
<td>7.62 1</td>
</tr>
<tr>
<td>10,000</td>
<td>88</td>
<td>895</td>
<td>1:1</td>
<td>2</td>
<td>88</td>
<td>10,000</td>
<td>10.2 1</td>
</tr>
<tr>
<td>15,000*</td>
<td>95</td>
<td>1,492</td>
<td>1:1</td>
<td>2</td>
<td>95</td>
<td>15,000</td>
<td>10.2 1</td>
</tr>
</tbody>
</table>

Table 5: Speed, Torque & Power (SI Units) 1:1 Pulley Ratio

<table>
<thead>
<tr>
<th>Motor_Spd (RPM)</th>
<th>Motor Torque (Ncm)</th>
<th>Power (watts)</th>
<th>Pulley Ratio (motor/brake) Qty. Brks</th>
<th>Brake Torque (Ncm)</th>
<th>Brake_Spd (RPM)</th>
<th>Arm (cm)</th>
<th>L.C. Ref. #**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>0</td>
<td>1:4</td>
<td>2</td>
<td>51</td>
<td>0</td>
<td>5.08 1</td>
</tr>
<tr>
<td>20,000*</td>
<td>18</td>
<td>388</td>
<td>1:4</td>
<td>2</td>
<td>73</td>
<td>5,000</td>
<td>5.08 1</td>
</tr>
<tr>
<td>20,000*</td>
<td>9.2</td>
<td>194</td>
<td>1:4</td>
<td>1</td>
<td>37</td>
<td>5,000</td>
<td>5.08 1</td>
</tr>
<tr>
<td>20,000*</td>
<td>0.02</td>
<td>7.46</td>
<td>1:4</td>
<td>1</td>
<td>0.09***</td>
<td>5,000</td>
<td>5.08 1</td>
</tr>
</tbody>
</table>

Table 6: Speed, Torque & Power (SI Units) 1:4 Pulley Ratio

The table is based on the performance graph for the MB-2.4 Brake, shown in Section 2.
* Maximum speed is limited to the physical speed limits of the pulleys and belt.
** See Table 7 for load cell specifications based on the number shown.
*** Torque required to overcome the air drag of brake at speed; does not account for bearing friction or belt losses.
3.3 Load Cell Sizes

The load cell(s) for the system may be specified by their load rating (column 2 or 3). Sections 5.1 & 5.2 has the data for the listed load cells.

<table>
<thead>
<tr>
<th>Load Cell Ref. #</th>
<th>Load Rating (lbs.)</th>
<th>Load Rating (Kg.)</th>
<th>Arm (inches [cm])</th>
<th>Max Torque (in-lbs.)</th>
<th>Max Torque (in-oz.)</th>
<th>Max Torque (Ncm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2</td>
<td>1</td>
<td>2 [5.08]</td>
<td>4.4</td>
<td>70.5</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
<td>1</td>
<td>3 [7.62]</td>
<td>6.6</td>
<td>106</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
<td>1</td>
<td>4 [10.16]</td>
<td>8.8</td>
<td>141</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>2 [5.08]</td>
<td>8.8</td>
<td>141</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>3 [7.62]</td>
<td>13.2</td>
<td>212</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>4 [10.16]</td>
<td>17.6</td>
<td>282</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5</td>
<td>2 [5.08]</td>
<td>22</td>
<td>353</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5</td>
<td>3 [7.62]</td>
<td>33</td>
<td>529</td>
<td>375</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5</td>
<td>4 [10.16]</td>
<td>44</td>
<td>706</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>6</td>
<td>2 [5.08]</td>
<td>26.5</td>
<td>423</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>6</td>
<td>3 [7.62]</td>
<td>39.7</td>
<td>635</td>
<td>450</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>6</td>
<td>4 [10.16]</td>
<td>52.9</td>
<td>847</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 7: Load Cell Reference

The following sections, 4 & 5, are the specifications for the different types of load cells.

4. LOAD CELLS (DB6B-2.4T-FM, Measuring Brake Torque)

Load Cell Load Rating ... 70.5 oz. (2 kg)
Arm Length .. 1.75 inches (4.445 cm)
Rated torque of Load Cell 123.4 in-oz. (87.2 Ncm)
Safe Overload torque of Load Cell 185.2 in-oz. (130.8 Ncm)
Max Brake Torque .. 67 in-oz. (47.3 Ncm)
Max Torque to Load Cell 67 in-oz. (47.3 Ncm)
Non-Linearity .. 0.02% of Rated Output (R.O.)
Hysteresis .. 0.02% of R.O.
Non-Repeatability .. 0.02% of R.O.
Zero Balance .. ±5% of R.O.
Compensated Temperature Range 14°F to 104°F
Safe Temperature Range 14°F to 140°F
Temperature Effect on Output 0.002% of Load/°F
Temperature Effect on Zero 0.002% of Load/°F
Safe Overload .. 150% of R.O.*

* Hard stops are in place to help prevent damage from over-load.
4.1 Brake Load Cell Accuracy Plot (in-oz.) – Linear

Load Cell * Arm = Rated Tq.

Load Cell [kg] * 1.75 = 123.4 in-oz.

Max Brake Torque: 67 in-oz.

LSP-2 (1.75’ arm)

DB6B-2.4T-FM Torque Accuracy
2-kd. Load Cell Measuring Torque of one MB6-2.4 Brake

04/24/20
4.2 Brake Load Cell Accuracy Plot (N-cm) – Linear
5. LOAD CELLS (DB6M-2.4T-FM, Measuring Motor Torque):
For section 5.1 & 5.2, reference Table 7, in section 3.3 Load Cell Sizes.

5.1 Load Cell #’s 1 through 3.
Load Cell Load Rating .. 35.3 oz. (1 kg)
Safe Overload .. 150% of R.O.*
Non-Linearity ... 0.02% of Rated Output (R.O.)
Hysteresis ... 0.02% of R.O.
Non-Repeatability .. 0.02% of R.O.
Zero Balance .. ±5% of R.O.
Compensated Temperature Range 14°F to 104°F
Safe Temperature Range ... 14°F to 140°F
Temperature Effect on Output 0.002% of Load/°F
Temperature Effect on Zero 0.002% of Load/°F

5.2 Load Cell #4.
Load Cell Load Rating .. 212 oz. (6 kg)
Safe Overload .. 150% of R.O.*
Non-Linearity ... 0.02% of Rated Output (R.O.)
Hysteresis ... 0.02% of R.O.
Non-Repeatability .. 0.02% of R.O.
Zero Balance .. ±1% mV/V
Compensated Temperature Range 14°F to 104°F
Safe Temperature Range ... 14°F to 140°F
Temperature Effect on Output 0.002% of Load/°F
Temperature Effect on Zero 0.002% of Load/°F

* Hard stops are in place to help prevent damage from over-load.

The Torque Accuracy plots to follow show the percentage error as a function of measured torque. These plots show the range that the load cell selected will accurately measure. Plots are shown on a linear scale and, for clarity, on a logarithmic scale. The maximum torque to the motor is based on the pulley ratio selected for belt coupled systems. The accuracy plots are based on published data from the load cell vendor.
5.3 Motor Load Cell Accuracy Plot (in-oz., 3 & 4-inch arm) - Linear

DBGM-2.4T-FM Torque Accuracy
Various Load Cells Measuring Motor Torque w/ 3-inch & 4-inch arm

<table>
<thead>
<tr>
<th>Load Cell #</th>
<th>Arm (in)</th>
<th>Rated Tq (in-lbs)</th>
<th>Tq (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 [1]</td>
<td>4.0</td>
<td>8.8 [141]</td>
<td></td>
</tr>
<tr>
<td>4.4 [2]</td>
<td>4.0</td>
<td>17.6 [282]</td>
<td></td>
</tr>
<tr>
<td>11 [5]</td>
<td>3.0</td>
<td>33 [928]</td>
<td></td>
</tr>
<tr>
<td>13 [6]</td>
<td>3.0</td>
<td>39 [624]</td>
<td></td>
</tr>
</tbody>
</table>

9 in-oz. - 1 Brake (Max Stall, 1:4 ratio)
17 in-oz. - 1 Brake (Max Tq, 1:4 ratio)
18 in-oz. - 2 Brakes (Max Stall, 1:4 ratio)
34 in-oz. - 2 Brakes (Max Tq, 1:4 ratio)
36 in-oz. - 1 Brake (Max Stall, 1:1 ratio)
72 in-oz. - 2 Brakes (Max Stall, 1:1 ratio)
134 in-oz. - 2 Brakes (Max Stall, 1:1 ratio)
144 in-oz. - 1 Brake (Max Stall, 4:1 ratio)

Max Torque (18): 67 in-oz, x1 brake, 4:1 ratio = 268 in-oz.
Max Stall Torque (28): 35 in-oz, x2 brakes, 4:1 ratio = 288 in-oz.

Max Torque (28): 67 in-oz, x2 brakes, 4:1 ratio = 536 in-oz.
DB6M-2.4T-FM Torque Accuracy
Various Load Cells Measuring Motor Torque w/ 3-inch & 4-inch arm

Load Cell * Arm = Rated T9
[lbs (psi)] [in.] [in-lb in.oz]
2.2 [1] * 4.0 = 8.8 [141]
6.4 [2] * 4.0 = 17.6 [282]
11 [5] * 3.0 = 33 [528]
5.5 Motor Load Cell Accuracy Plot (N-cm, 7.62 & 10.16-cm arm) – Linear

DB6M-2.4T-FM Torque Accuracy
Various Load Cells Measuring Motor Torque w/ 3-inch & 4-inch arm

<table>
<thead>
<tr>
<th>Load Cell</th>
<th>Arm (cm)</th>
<th>Rated Tq (N-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [2.2]</td>
<td>10.16</td>
<td>100</td>
</tr>
<tr>
<td>2 [4.4]</td>
<td>10.16</td>
<td>200</td>
</tr>
<tr>
<td>6 [13]</td>
<td>7.62</td>
<td>450</td>
</tr>
</tbody>
</table>

Max Torque (1B):
7.3 Ncm, x1 Brake, 4:1 ratio = 189 Ncm
Max Stall Torque (2B):
25.4 Ncm, x2 Brakes, 4:1 ratio = 203 Ncm
Max Torque (2B):
47.3 Ncm, x2 Brakes, 4:1 ratio = 378 Ncm
DB6M-2.4T-FM Torque Accuracy
Various Load Cells Measuring Motor Torque w/ 3-inch & 4-inch arm

<table>
<thead>
<tr>
<th>Load Cell</th>
<th>Arm (cm)</th>
<th>Rated Tq (N·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [2.2]</td>
<td>10.16</td>
<td>100</td>
</tr>
<tr>
<td>2 [4.4]</td>
<td>10.16</td>
<td>200</td>
</tr>
<tr>
<td>6 [13]</td>
<td>7.52</td>
<td>450</td>
</tr>
</tbody>
</table>

% Error vs. Motor Torque (N·cm)
DB6M-2.4T-FM Torque Accuracy
Various Load Cells Measuring Motor Torque w/ 2-inch arm

Motor Load Cell Accuracy Plot (in-oz., 2-inch arm) – Linear

<table>
<thead>
<tr>
<th>Load Cell</th>
<th>Arm</th>
<th>Rated Tq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>in</td>
</tr>
<tr>
<td>2.2 [1]</td>
<td>2.0</td>
<td>4.4 [70.5]</td>
</tr>
<tr>
<td>4.4 [2]</td>
<td>2.0</td>
<td>8.8 [141]</td>
</tr>
<tr>
<td>11 [5]</td>
<td>2.0</td>
<td>22 [353]</td>
</tr>
<tr>
<td>13 [6]</td>
<td>2.0</td>
<td>26.5 [423]</td>
</tr>
</tbody>
</table>

- 9 in-oz. - 1 Brake (Max Stall, 1:4 ratio)
- 17 in-oz. - 1 Brake (Max Tq, 1:4 ratio)
- 18 in-oz. - 2 Brakes (Max Stall, 1:4 ratio)
- 34 in-oz. - 2 Brakes (Max Tq, 1:4 ratio)
- 36 in-oz. - 1 Brake (Max Stall, 1:1 ratio)
- 72 in-oz. - 2 Brakes (Max Stall, 1:1 ratio)
- 134 in-oz. - 2 Brakes (Max Stall, 1:1 ratio)
- Max Stall Torque (1B): 36 in-oz, x1 brake, 4:1 ratio = 144 in-oz.
- Max Torque (1B): 67 in-oz, x2 brakes, 4:1 ratio = 268 in-oz.
- Max Stall Torque (2B): 36 in-oz, x2 brakes, 4:1 ratio = 288 in-oz.
- Max Torque (2B): 67 in-oz, x2 brakes, 4:1 ratio = 536 in-oz (switch to 3" arm)
5.8 Motor Load Cell Accuracy Plot (in-oz., 2-inch arm) – Logarithmic
DB6M-2.4T-FM Torque Accuracy

Various Load Cells Measuring Motor Torque w/ 2-inch arm

Load Cell * Arm = Rated Tq. (lbg [lbs]) (cm) (Ncm)
1 [2.2] * 5.08 = 49.8
2 [4.4] * 5.08 = 99.6
5 [11] * 5.08 = 249
6 [13] * 5.08 = 299

6.4 Ncm - 1 Brake (Max Stall, 1:4 ratio)
12 Ncm - 2 Brake (Max Tq, 1:4 ratio)
13 Ncm - 2 Brakes (Max Stall, 1:4 ratio)
24 Ncm - 2 Brakes (Max Tq, 1:4 ratio)
25 Ncm - 1 Brake (Max Stall, 1:1 ratio)
51 Ncm - 2 Brakes (Max Stall, 1:1 ratio)
95 Ncm - 2 Brakes (Max Stall, 1:1 ratio)

Max Stall Torque (1B): 25.4 Ncm, x1 Brake, 4:1 ratio = 102 Ncm
Max Stall Torque (2B): 25.4 Ncm, x2 brakes, 4:1 ratio = 233 Ncm
Max Torque (1B): 47.3 Ncm, x1 brake, 4:1 ratio = 378 Ncm
Max Torque (2B): 47.3 Ncm, x2 brakes, 4:1 ratio = 762 Ncm

5.9 Motor Load Cell Accuracy Plot (N-cm, 5.08-cm arm) – Linear
5.10 Motor Load Cell Accuracy Plot (N-cm, 5.08-cm arm) - Logarithmic
6. SPEED MEASUREMENT

A standard brake has five magnets (alternative quantity or an external encoder is optional) which trigger a hall effect sensor. The speed is averaged over one revolution of the brake. A 48-MHZ clock is used to measure the time between magnets (or pulses).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Error</td>
<td>~25°C</td>
<td>±30</td>
<td>PPM</td>
<td>±100</td>
<td>PPM</td>
</tr>
<tr>
<td></td>
<td>-10°C to 60°C</td>
<td>±50</td>
<td>PPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-40°C to 85°C</td>
<td>±100</td>
<td>PPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Speed</td>
<td>5 magnets</td>
<td>12</td>
<td>180,000*</td>
<td>RPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 magnets</td>
<td>2</td>
<td>30,000*</td>
<td>RPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000 PPR</td>
<td>0.066</td>
<td>5,000</td>
<td>RPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,000 PPR</td>
<td>0.033</td>
<td>2,000</td>
<td>RPM</td>
<td></td>
</tr>
</tbody>
</table>

* Theoretical speed; actual maximum speed is limited to the speed of the brake.

7. DATA SAMPLING

Sampling is the frequency of measuring and recording data; this rate is adjustable by the operator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate</td>
<td>2.3 GHz Proc.</td>
<td>20</td>
<td>50</td>
<td>-</td>
<td>ms</td>
</tr>
</tbody>
</table>

i.e., 50 ms = 20 samples (or readings) per second.

8. LAPTOP COMPUTER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2.3</td>
<td>GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>8</td>
<td>GB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>LED LCD</td>
<td>15.6</td>
<td>inches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A computer with a more powerful processor may allow a higher sampling frequency.

9. POWER REQUIREMENTS

The MBS Dynamometer requires two 115 or 230 VAC power outlets: one for the laptop computer and one for the controller. The brakes in the dynamometer structure receive power from the controller. The AC power supplies the power supplies and cooling fan in the controller; everything else is 24 VDC (or less) in the system.

<table>
<thead>
<tr>
<th>Item</th>
<th>Voltage</th>
<th>Type</th>
<th>Current</th>
<th>Freq.</th>
<th># Plugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>115/230</td>
<td>VAC</td>
<td>1.1/0.6</td>
<td>50/60</td>
<td>1</td>
</tr>
<tr>
<td>Laptop</td>
<td>110-240</td>
<td>VAC</td>
<td>1.2</td>
<td>50/60</td>
<td>1</td>
</tr>
<tr>
<td>Dynamometer</td>
<td>24</td>
<td>VDC</td>
<td>6.0</td>
<td>-</td>
<td>none</td>
</tr>
</tbody>
</table>
10. DC VOLTAGE TRANSDUCERS

10.1 Input
Range .. 0 VDC to: 1, 5, 10, 50, 150, 200 up to 600 VDC
Overload ... 2x voltage range selected
Frequency Range DC only

The range represents transducers that measure from 0-1 VDC, 0-5 VDC, 0-10 VDC, etc.

10.2 Output
Basic Accuracy 1.0%
Linearity ... 10% to 100% F.S.
Thermal Drift 500 PPM/° C
Response Time 250 ms

10.3 Environmental and Physical Characteristics
Operating Temperature 0° C to +50° C
Insulation Category CAT II
Vibration Tested to IEC 60068-2-6, 1995
Pollution Degree 2
Altitude ... 2000-meter max.
Insulation Voltage 2500 VDC
MTBF ... Greater than 100K hours
Relative Humidity 5% to 95%, non-condensing
Weight ... 0.5 lbs.
11. AC VOLTAGE TRANSDUCERS – SINGLE PHASE

11.1 Input
Range... 0 VAC to: 50, 150, 250, 500, 600 VAC
Overload .. 2x voltage range selected
Frequency Range 20 Hz to 5 kHz

11.2 Output
Basic Accuracy 0.5%
Linearity 10% to 100% F.S.
Calibration True RMS sensing
Thermal Drift 500 PPM/°C
Response Time 250 ms

11.3 Environmental and Physical Characteristics
Operating Temperature 0° C to +60° C
Insulation Category CAT II
Vibration Tested to IEC 60068-2-6, 1995
Pollution Degree 2
Altitude 2000-meter max.
Insulation Voltage 2500 VDC
MTBF Greater than 100K hours
Relative Humidity 5% to 95%, non-condensing
Weight 0.5 lbs.

12. DC CURRENT TRANSDUCERS (Split Core)

12.1 Input
Range... 0 ADC to: 2, 5, 10, 20, 30, 50 up to 600 ADC
Overload .. 4x current range selected
Frequency Range DC only

12.2 Output
Basic Accuracy 1.0%
Linearity 10% to 100% F.S.
Thermal Drift 500 PPM/°C
Response Time 250 ms

12.3 Environmental and Physical Characteristics
Operating Temperature 0° C to +50° C
Insulation Category CAT II
Vibration Tested to IEC 60068-2-6, 1995
Pollution Degree 2
Altitude 2000-meter max.
Insulation Voltage 2500 VDC
MTBF Greater than 100K hours
Relative Humidity 5% to 95%, non-condensing
Weight 0.5 lbs.
13. AC CURRENT TRANSDUCERS – SINGLE PHASE (Split Core)

13.1 Input
Range .. 0 AAC to: 5, 10, 15, 20, 25, 30, 40, 50 up to 600 AAC
Overload .. 4x current range selected
Frequency Range 20 Hz to 5 kHz

13.2 Output
Basic Accuracy 0.5%
Linearity .. 10% to 100% F.S.
Calibration .. True RMS sensing
Thermal Drift 500 PPM/°C
Response Time 250 ms

13.3 Environmental and Physical Characteristics
Operating Temperature 0°C to +60°C
Insulation Category CAT II
Vibration Tested to IEC 60068-2-6, 1995
Pollution Degree 2
Altitude ... 2000-meter max.
Insulation Voltage 2500 VDC
MTBF .. Greater than 100K hours
Relative Humidity 5% to 95%, non-condensing
Weight .. 0.5 lbs.
14. DYNAMOMETER LAYOUT – DB6B-2.4T-FM, LOAD CELL ON BRAKE
15. MOTOR MOUNTING PLATE – FACE MOUNT (DB6B)

NOTES:
1. PLATE TO BE MODIFIED TO SUIT CUSTOMER’S REQUIREMENTS.

MATL: 6061-T6 AL. ALLOY
FINISH: CLEAR ANODIZE PER MIL-A-8625 TYPE II, CL I

THE INFORMATION DISCLOSED HEREIN IS THE EXCLUSIVE PROPERTY OF
MAGNETIC BRAKE SYSTEMS
A DIVISION OF TECHNICAL FELT SYSTEMS, INC.
OR MAY CONTAIN PROPRIETARY RIGHTS OF OTHERS AND IS NOT TO BE USED OR
REPRODUCED TO OTHERS WITHOUT THE WRITTEN CONSENT OF THE ABOVE.

REF: 624-0015 BASE PLATE – FACE MOUNT,
N/A: 624-0015 MODEL 2.4

SH 1 OF 1
B624-1071
16. DYNAMOMETER LAYOUT – DB6M-2.4T-FM, L.C. ON MOTOR (OPTION 1)
17. MOTOR MOUNTING PLATE – FACE MOUNT (DB6M)

NOTES:
1. PLATE TO BE MODIFIED TO SUIT CUSTOMER'S REQUIREMENTS.

MATL: 6061-T6 AL. ALLOY
FINISH: CLEAR ANODIZE PER MIL-A-8625 TYPE II, CL I

SCALE: 1:2
ENGR: MICHELSON
REF: 624-0001
N/A: SEE NOTES
BASE PLATE – FACE MOUNT, MODEL 2.4
SH 1 OF 1
B624-1003A
18. DYNAMOMETER LAYOUT – DB6M-2.4T-BM, L.C. ON MOTOR (OPTION 2)
20. CONTROLLER LAYOUT
21. NOMENCLATURE OF DYNAMOMETER MODEL NUMBER

DB6M-8.7T-FM

Motor Mounting Style:
- FM = Face Mount
- BM = Base Mount
- CB = Carriage Base

Number of Brakes:
- T = Tandem System
 - Omitting T = single brake system

Brake Size:
- 17.5 = MBZ-17.5 brake
- 8.7 = MBZ-8.7 brake
- 5.7 = MBZ-5.7 brake
- 3.7 = MBZ-3.75 brake
- 2.4 = MBZ-2.4 brake

Load Cell Location:
- M = Measuring Motor Torque
- B = Measuring Brake Torque

Centerline Distance:
- 3 = 3 inches from top of baseplate to centerline of motor shaft.
- 6 = 6 inches from top of baseplate to centerline of motor shaft

System Type:
- B = Belt Coupled system
- I = Inline system
- D = Dynamometer

The load cell(s) size(s) and type(s) of voltage & Current transducers are to be specified individually.