DYNAMOMETER DATA SHEET
(Version 1.0)

MODELS:
DI5B-8.7-BM DI5M-8.7-BM
DI5B-8.7-FM DI5M-8.7-FM

Max continuous power dissipation: 6.6 HP (4.9 kW)
Max power for 30 seconds: 15 HP (11.2 kW)
Max continuous brake torque: 212 in-lbs. (24 N-m) @ 1,000 RPM
Max Brake Torque: 250 in-lbs. (28.2 N-m)
Max brake speed: 6,000 RPM
TABLE OF CONTENTS

1. OVERVIEW .. 4
2. SPEED vs. TORQUE CURVE – MB-8.7 BRAKE ... 6
3. MOTOR TORQUE & SPEED ... 7
4. LOAD CELL (Option 1: DI5B-8.7-FM, Measure Brake Torque) 7
5. LOAD CELL (Option 2: DI5M-8.7-FM, Measure Motor Torque) 7
 5.1 Load Cell Accuracy Plot (in-lbs.) – DI5B-8.7-FM ... 8
 5.2 Load Cell Accuracy Plot (Nm) – DI5B-8.7-FM .. 9
 5.3 Load Cell Accuracy Plot (in-lbs.) – DI5M-8.7-FM ... 10
 5.4 Load Cell Accuracy Plot (Nm) – DI5M-8.7-FM ... 11
6. SPEED MEASUREMENT ... 12
7. DATA SAMPLING ... 12
8. LAPTOP COMPUTER ... 12
9. POWER REQUIREMENTS .. 12
10. DC VOLTAGE TRANSDUCERS ... 13
 10.1 Input ... 13
 10.2 Output ... 13
 10.3 Environmental and Physical Characteristics ... 13
11. AC VOLTAGE TRANSDUCERS – SINGLE PHASE .. 13
 11.1 Input ... 13
 11.2 Output ... 13
 11.3 Environmental and Physical Characteristics ... 13
12. AC VOLTAGE TRANSDUCERS – THREE PHASE .. 14
 12.1 Input ... 14
 12.2 Output ... 14
 12.3 Environmental and Physical Characteristics ... 14
 12.4 Applications .. 14
DC CURRENT TRANSDUCERS (Split Core)

Input

Output

Environmental and Physical Characteristics

AC CURRENT TRANSDUCERS – SINGLE PHASE (Split Core)

Input

Output

Environmental and Physical Characteristics

AC CURRENT TRANSDUCERS – THREE PHASE (Low Current)

Input

Output

Environmental and Physical Characteristics

AC CURRENT TRANSDUCERS – THREE PHASE (High Current)

Input

Output

Environmental and Physical Characteristics

DYNAMOMETER LAYOUT – DI5B-8.7-FM, L.C. ON BRAKE (OPTION 1)

MOTOR MOUNTING PLATE – DI5B

DYNAMOMETER LAYOUT – DI5B-8.7-BM, L.C. ON BRAKE (OPTION 2)

DYNAMOMETER LAYOUT – DI5M-8.7-FM, L.C. ON MOTOR (OPTION 1)

MOTOR MOUNTING PLATE – DI5M

DYNAMOMETER LAYOUT – DI5M-8.7-BM, L.C. ON MOTOR (OPTION 2)

DYNAMOMETER CONTROLLER

NOMENCLATURE OF DYNAMOMETER PART NUMBER
1. OVERVIEW

This data sheet is a reference for the performance specifications of the dynamometer models listed on the cover page.

The MBS dynamometers may be used to test just about any type of motor (i.e. electric, hydraulic, pneumatic, reciprocating). Types of testing include: endurance testing, speed versus torque curves, measure stall torque, efficiency, temperature rise, performance verification, etc. MBS dynamometers are sold as complete systems (shown in image below) that include: the dynamometer, controller, computer with software, calibration weight, manual and all cables. Our systems do not require annual fees, licenses or permits. The software is user friendly, is very configurable (i.e. changing units, display scale limits, data acquisition rate, etc.) and has some safety precautions build in to prevent damage to the motor under test and/or the system (i.e. brake temperature sensor, setting current limit, setting power limit, trigger input signals).

The nomenclature of the dynamometer part number is described at the end of this document. The power dissipation rating for this system is located on the bottom of the cover page. This data sheet may also be used to determine the best configuration for a system.

Dynamometers, or more specifically the size of the brakes for the dynamometers, are selected based on the required power dissipation and required torque.
A belt coupled system will provide a much broader range of torque supplied to the motor under test, which makes a dynamometer more cost effective and diverse than a direct drive system.

The location of the load cell is optional but must be decided prior to purchasing a dynamometer. Placing the load cell so that it measures the torque of the motor (i.e. Model DI5M-8.7-BM) may provide the most accurate torque readings; however, the range of torque that the system can measure is limited to the maximum load of the load cell and the accuracy at low loads; this can be seen in Section 5, Load Cell Accuracy Plots.

Alternatively, placing the load cell so that it measures the torque of the brake (i.e. Model DI5B-8.7-FM) omits measuring rogue torque loads to the motor (i.e. bumping power cables during test); however, now the load cell will not measure bearing friction (which is usually negligible) and any other minor losses. When measuring the brake torque, the air drag from the brake is not measured; however, the dynamometer software compensates for the air drag.

The motor torque, speed, voltage and current ranges (and types; i.e. DC, AC, AC-3ph) need to be specified when purchasing a dynamometer in order to select the limits for the instrumentation. The following performance specifications for load cells, transducers, etc. are based on vendor specifications.
2. SPEED vs. TORQUE CURVE – MB-8.7 BRAKE

![Diagram showing SPEED vs. TORQUE curve for MB-8.7 Brake](image-url)
3. **MOTOR TORQUE & SPEED**

<table>
<thead>
<tr>
<th>Brake Torque (in-lbs.)</th>
<th>Brake_Spd (RPM)</th>
<th>Power (HP)</th>
<th>Time (sec)</th>
<th>Pulley Ratio</th>
<th>Motor Torque (in-lbs.)</th>
<th>Motor_Spd (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>0</td>
<td>0</td>
<td>cont.</td>
<td>Direct drive</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>219</td>
<td>1,000</td>
<td>3.5</td>
<td>cont.</td>
<td>Direct drive</td>
<td>219</td>
<td>1,000</td>
</tr>
<tr>
<td>87.5</td>
<td>3,600</td>
<td>5.0</td>
<td>cont.</td>
<td>Direct drive</td>
<td>87.5</td>
<td>3,600</td>
</tr>
<tr>
<td>237</td>
<td>3,600</td>
<td>13.5</td>
<td>30</td>
<td>Direct drive</td>
<td>237</td>
<td>3,600</td>
</tr>
<tr>
<td>69</td>
<td>6,000</td>
<td>6.6</td>
<td>cont.</td>
<td>Direct drive</td>
<td>69</td>
<td>6,000</td>
</tr>
<tr>
<td>158</td>
<td>6,000</td>
<td>15</td>
<td>30</td>
<td>Direct drive</td>
<td>158</td>
<td>6,000</td>
</tr>
</tbody>
</table>

Table 1: Torque, Speed and Power

The table is based on the performance graph for the MBZ-8.7 Brake, shown in Section 2.

4. **LOAD CELL (Option 1: DI5B-8.7-FM, Measure Brake Torque)**

- Max Brake Torque................................. 250 in-lbs. (28.3 Nm) *
- Max Torque to L.C................................. 265 in-lbs. (30 Nm)
- Non-Linearity 0.02% of Rated Output (R.O.)
- Hysteresis .. 0.02% of R.O.
- Non-Repeatability 0.02% of R.O.
- Zero Balance ±1% of R.O.
- Compensated Temperature Range 14°F to 104°F
- Safe Temperature Range 14°F to 140°F
- Temperature Effect on Output 0.002% of Load/°F
- Temperature Effect on Zero 0.002% of Load/°F
- Safe Overload 150% of R.O.*

5. **LOAD CELL (Option 2: DI5M-8.7-FM, Measure Motor Torque)**

- Max Brake Torque................................. 250 in-lbs. (28 Nm) *
- Max Torque to L.C................................. 265 in-lbs. (30 Nm)
- Non-Linearity 0.02% of R.O.
- Hysteresis .. 0.02% of R.O.
- Non-Repeatability 0.02% of R.O.
- Zero Balance ±1% of R.O.
- Compensated Temperature Range 14°F to 104°F
- Safe Temperature Range 14°F to 140°F
- Temperature Effect on Output 0.002% of Load/°F
- Temperature Effect on Zero 0.002% of Load/°F
- Safe Overload 150% of R.O.**

* 250 in-lbs. is the standard maximum brake torque; if this value is changed, the load cell may also need to be changed.

** Hard stops are in place to help prevent damage from over-load.
5.1 Load Cell Accuracy Plot (in-lbs.) – DI5B-8.7-FM
The Torque Error plot shows the percentage error as a function of measured torque. These plots show the range that a load cell will accurately measure. The maximum torque to the motor is based on the maximum torque from the brake. The error plot is based on published data from the load cell vendor.
5.2 Load Cell Accuracy Plot (Nm) – DI5B-8.7-FM

Load Cell * Arm = Max. Torque

20-kg (44-lbs) * 16 (cm) = 31 (Nm)

31 Nm
Max Load on Load Cell

28.2 Nm
Max Brake Torque

0.47 Nm
0.63 Nm
0.94 Nm
1.88 Nm
5.3 Load Cell Accuracy Plot (in-lbs.) – DI5M-8.7-FM
5.4 Load Cell Accuracy Plot (Nm) – DI5M-8.7-FM
6. SPEED MEASUREMENT
A standard brake has five magnets (alternative quantity are optional) which trigger a hall effect sensor. The speed is averaged over one revolution of the brake. A 48-MHZ clock is used to measure the time between magnets.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Error</td>
<td>~25°C</td>
<td>±30</td>
<td></td>
<td></td>
<td>PPM</td>
</tr>
<tr>
<td></td>
<td>-10°C to 60°C</td>
<td>±50</td>
<td></td>
<td></td>
<td>PPM</td>
</tr>
<tr>
<td></td>
<td>-40°C to 85°C</td>
<td>±100</td>
<td></td>
<td></td>
<td>PPM</td>
</tr>
<tr>
<td>Brake Speed</td>
<td>5 magnets</td>
<td>12</td>
<td>180’</td>
<td>30*</td>
<td>KPM</td>
</tr>
<tr>
<td></td>
<td>30 magnets</td>
<td>2</td>
<td></td>
<td>30*</td>
<td>KPM</td>
</tr>
</tbody>
</table>

* Theoretical speed; actual maximum speed is limited to the speed of the brake.

7. DATA SAMPLING
Sampling is the frequency of measuring and recording data; this rate is adjustable by the operator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate</td>
<td>2.3 GHz Proc.</td>
<td>20</td>
<td>50</td>
<td>-</td>
<td>ms</td>
</tr>
</tbody>
</table>

i.e. 50 ms = 20 samples (or readings) per second.

8. LAPTOP COMPUTER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Memory</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>GB</td>
</tr>
<tr>
<td>Display</td>
<td>LED LCD</td>
<td>15.6</td>
<td></td>
<td></td>
<td>inches</td>
</tr>
</tbody>
</table>

9. POWER REQUIREMENTS
The MBS Dynamometer requires two 115 or 230 VAC power outlets: one for the laptop computer and one for the controller. The brakes in the dynamometer structure receive power from the controller.

<table>
<thead>
<tr>
<th>Item</th>
<th>Voltage</th>
<th>Type</th>
<th>Current (amps)</th>
<th>Freq. (Hz)</th>
<th># Plugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>115/230 VAC</td>
<td></td>
<td>1.1/0.6</td>
<td>50/60</td>
<td>1</td>
</tr>
<tr>
<td>Laptop</td>
<td>110-240 VAC</td>
<td></td>
<td>1.2</td>
<td>50/60</td>
<td>1</td>
</tr>
<tr>
<td>Dynamometer</td>
<td>24 VDC</td>
<td></td>
<td>6.0</td>
<td>-</td>
<td>none</td>
</tr>
</tbody>
</table>
DC VOLTAGE TRANSDUCERS

10.1 Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 VDC to: 1, 5, 10, 50, 150, 200 up to 600 VDC</td>
</tr>
<tr>
<td>Overload</td>
<td>2x voltage range selected</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>DC only</td>
</tr>
</tbody>
</table>

10.2 Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Accuracy</td>
<td>1.0%</td>
</tr>
<tr>
<td>Linearity</td>
<td>10% to 100% F.S.</td>
</tr>
<tr>
<td>Thermal Drift</td>
<td>500 PPM°C</td>
</tr>
<tr>
<td>Response Time</td>
<td>250 ms</td>
</tr>
</tbody>
</table>

10.3 Environmental and Physical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0°C to +50°C</td>
</tr>
<tr>
<td>Insulation Category</td>
<td>CAT II</td>
</tr>
<tr>
<td>Vibration Tested to</td>
<td>IEC 60068-2-6, 1995</td>
</tr>
<tr>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td>Altitude</td>
<td>2000-meter max.</td>
</tr>
<tr>
<td>Insulation Voltage</td>
<td>2500 VDC</td>
</tr>
<tr>
<td>MTBF</td>
<td>Greater than 100K hours</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 95%, non-condensing</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 lbs</td>
</tr>
</tbody>
</table>

AC VOLTAGE TRANSDUCERS – SINGLE PHASE

11.1 Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 VAC to: 50, 150, 250, 500, 600 VAC</td>
</tr>
<tr>
<td>Overload</td>
<td>2x voltage range selected</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>20 Hz to 5 kHz</td>
</tr>
</tbody>
</table>

11.2 Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Accuracy</td>
<td>0.5%</td>
</tr>
<tr>
<td>Linearity</td>
<td>10% to 100% F.S.</td>
</tr>
<tr>
<td>Calibration</td>
<td>True RMS sensing</td>
</tr>
<tr>
<td>Thermal Drift</td>
<td>500 PPM°C</td>
</tr>
<tr>
<td>Response Time</td>
<td>250 ms</td>
</tr>
</tbody>
</table>

11.3 Environmental and Physical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0°C to +60°C</td>
</tr>
<tr>
<td>Insulation Category</td>
<td>CAT II</td>
</tr>
<tr>
<td>Vibration Tested to</td>
<td>IEC 60068-2-6, 1995</td>
</tr>
<tr>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td>Altitude</td>
<td>2000-meter max.</td>
</tr>
<tr>
<td>Insulation Voltage</td>
<td>2500 VDC</td>
</tr>
<tr>
<td>MTBF</td>
<td>Greater than 100K hours</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 95%, non-condensing</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 lbs</td>
</tr>
</tbody>
</table>
12. AC VOLTAGE TRANSDUCERS – THREE PHASE

12.1 Input
Range ... 0 VAC to: 50, 150, 250, 500, 600 VAC
Overload .. 2x voltage range selected
Frequency Range 20 Hz to 5 kHz

12.2 Output
Basic Accuracy 0.5%
Linearity ... 10% to 100% F.S.
Calibration .. True RMS sensing
Thermal Drift 500 PPM/°C
Response Time 250 ms

12.3 Environmental and Physical Characteristics
Operating Temperature 0°C to +60°C
Insulation Category CAT II
Vibration Tested to IEC 60068-2-6, 1995
Pollution Degree 2
Altitude .. 2000-meter max.
Insulation Voltage 2500 VDC
MTBF ... Greater than 100K hours
Relative Humidity 5% to 95%, non-condensing
Weight ... 0.5 lbs.

12.4 Applications
Harmonic voltages
Chopped waveform drivers
Quickly varying voltage supplies
Phase fired controlled devices
13. DC CURRENT TRANSDUCERS (Split Core)

13.1 Input
- Range ... 0 ADC to: 2, 5, 10, 20, 30, 50, 75, 100 up to 600 ADC
- Overload .. 4x current range selected
- Frequency Range DC only

13.2 Output
- Basic Accuracy 1.0%
- Linearity .. 10% to 100% F.S.
- Thermal Drift 500 PPM/°C
- Response Time 250 ms

13.3 Environmental and Physical Characteristics
- Operating Temperature 0°C to +50°C
- Insulation Category CAT II
- Vibration Tested to IEC 60068-2-6, 1995
- Pollution Degree 2
- Altitude ... 2000-meter max.
- Insulation Voltage 2500 VDC
- MTBF ... Greater than 100K hours
- Relative Humidity 5% to 95%, non-condensing
- Weight ... 0.5 lbs.

14. AC CURRENT TRANSDUCERS – SINGLE PHASE (Split Core)

14.1 Input
- Range ... 0 AAC to: 5, 10, 15, 20, 25, 30, 40, 50 up to 600 AAC
- Overload ... 4x current range selected
- Frequency Range 20 Hz to 5 kHz

14.2 Output
- Basic Accuracy 0.5%
- Linearity .. 10% to 100% F.S.
- Calibration ... True RMS sensing
- Thermal Drift 500 PPM/°C
- Response Time 250 ms

14.3 Environmental and Physical Characteristics
- Operating Temperature 0°C to +60°C
- Insulation Category CAT II
- Vibration Tested to IEC 60068-2-6, 1995
- Pollution Degree 2
- Altitude ... 2000-meter max.
- Insulation Voltage 2500 VDC
- MTBF ... Greater than 100K hours
- Relative Humidity 5% to 95%, non-condensing
- Weight ... 0.5 lbs.
15. AC CURRENT TRANSUCERS – THREE PHASE (Low Current)

15.1 Input
Range .. 0 AAC to: 0.5, 5, 10, 15, 16, 20, 25 AAC
Overload .. 4x current range selected
Frequency Range 20 Hz to 5 kHz

15.2 Output
Basic Accuracy .. 0.5%
Linearity .. 10% to 100% F.S.
Calibration .. True RMS sensing
Thermal Drift ... 500 PPM/°C
Response Time 250 ms max., 0 - 90%

15.3 Environmental and Physical Characteristics
Operating Temperature 0°C to +60°C
Insulation Category CAT II
Vibration Tested to IEC 60068-2-6, 1995
Pollution Degree 2
Altitude .. 2000-meter max.
Insulation Voltage 2500 VDC
MTBF ... Greater than 100K hours
Relative Humidity 5% to 95%, non-condensing
Weight .. 0.5 lbs.
16. AC CURRENT TRANSDUCERS – THREE PHASE (High Current)

16.1 Input
Range .. 0 to: 150, 200, 250, 400, 500, 600, 800, 1000 AAC
Overload (per range selected) 600, 750, 800, 1000, 1200, 1200, 1500, 1500 AAC
Frequency Range 47 to 63 Hz

16.2 Output
Current Signal 4 to 20 mA-DC (Full Scale)
Accuracy (Over the temp. range) ±0.5% F.S. max (±100 mA)

(Specified accuracy includes the combined worst-case effects of 4mA Offset, Temperature, Hysteresis, Supply Swings and Current Cable Positioning.)

Ripple .. 0.2% max (40 uA-AC)
Response Time (10 to 90%) 300 ms
Load Resistance (RL) 250 Ohms Nominal (0-300 Ohms Range)
Crest Factors 0 to 5
Current Signal @ Overload 23 mA-DC typical
Output Protection Reverse Polarity Protection

16.3 Environmental and Physical Characteristics
Operating Temperature Range -40°C to +85°C
Conducted Susceptibility DO-160E Section 20 (1.5 Ma @ 10KHz to
... 75 Ma @ 500 kHz to 400 MHz
Transient Burst (EN 50155) ±2KV Open CKT test voltage supply leads
Electrostatic Discharge (ESD) DO-160E Section 25 Category A
Humidity (Operating) 0% to 100% R.H.
Moisture Resistance MIL-STD-202 Method 106
Random Vibration (Operating) MIL-STD-810F, Proc.1, Cat.12,
.. WO=0.095G2/Hz, Time1 hr., Overall Level
.. 12.G-RMS
Shock ... 50g 11m-sec. half sine pulse
Isolation Input to output 5KV RMS 60 Hz/1min.
Insulation Resistance 500 M-Ohms @ 100 VDC
Case Material Brass
Finish ... Fuse tin plate per ASTM-B-545
Weight .. 4 lbs. Max
17. DYNAMOMETER LAYOUT – DI5B-8.7-FM, L.C. ON BRAKE (OPTION 1)
18. MOTOR MOUNTING PLATE – DI5B
19. DYNAMOMETER LAYOUT – DI5B-8.7-BM, L.C. ON BRAKE (OPTION 2)
20. DYNAMOMETER LAYOUT – DI5M-8.7-FM, L.C. ON MOTOR (OPTION 1)
22. DYNAMOMETER LAYOUT – DI5M-8.7-BM, L.C. ON MOTOR (OPTION 2)
23. DYNAMOMETER CONTROLLER
24. NOMENCLATURE OF DYNAMOMETER PART NUMBER

DB5M-8.7T-FM

Motor Mounting Style:
- FM = Face Mount
- BM = Base Mount
- CB = Carriage Base

Number of Brakes:
- T = Tandem System
- Omitting T = single brake system

Brake Size:
- 17.5 = MBZ-17.5 brake
- 8.7 = MBZ-8.7 brake
- 5.7 = MBZ-5.7 brake
- 3.7 = MBZ-3.75 brake
- 2.4 = MBZ-2.4 brake

Load Cell Location:
- M = Measuring Motor Torque
- B = Measuring Brake Torque

Centerline Distance:
- 3 = 3 inches from top of baseplate to centerline of motor shaft.
- 5 = 5 inches from top of baseplate to centerline of motor shaft

System Type:
- B = Belt Coupled system
- I = Inline system
- D = Dynamometer

The load cell(s) size(s) and type(s) of voltage & Current transducers are to be specified individually.